On mixing and transport at a sheared density interface
نویسندگان
چکیده
Mixing and transport of a stratifying scalar are investigated at a density interface imbedded in a turbulent shear flow. Steady-state interfacial shear flows are generated in a laboratory water channel for layer Richardson numbers, Ri, between about 1 and 10. The flow field is made optically homogeneous, enabling the use of laser-induced fluorescence with photodiode array imaging to measure the concentration field at high resolution. False-colour images of the concentration field provide valuable insight into interfacial dynamics : when the local mean shear Richardson number, Ri,, is less than about 0.4M.45, interfacial mixing appears to be dominated by Kelvin-Helmholtz (K-H) instabilities ; when Ri, is somewhat larger than this, interfacial mixing appears to be dominated by shear-driven wave breaking. In both cases, vertical transport of mixed fluid from the interfacial region into adjacent turbulent layers is accomplished by large-scale turbulent eddies which impinge on the interface and scour fluid from its outer edges. Motivated by the experimental findings, a model for interfacial mixing and entrainment is developed. A local equilibrium is assumed in which the rate of loss of interfacial fluid by eddy scouring is balanced by the rate of production (local mixing) by interfacial instabilities and molecular diffusion. When a single layer is turbulent and entraining, the model results are as follows : in the molecular-diffusion-dominated regime, S/h Pe-li2 and E Ri-lPe-li2; in the wave-breaking-dominated regime, S / h Ri-'!' and E Ri-3i2; and in the K-H-dominated regime, S/h Rip' and E R P , where S is the interface thickness, h is the boundary-layer thickness, Pe is the Ptclet number, and E is the normalized entrainment velocity. In all three regimes, the maximum concentration anomaly, r, Ri-l. When both layers are turbulent and entraining, E and 6 depend on combinations of parameters from both layers.
منابع مشابه
Studying the effect of roughness on soil-geotextile interaction in direct shear test
Abstract One of the methods of increasing soil resistance against failure is soil reinforcement using geosynthetics. Soil-geosynthetic interactions are of great importance and are affected by friction and adhesion at their interface. Soil gradation, contact surface roughness and geotextile density are among the factors affecting soil-geotextiles interaction this study, to investigate the eff...
متن کاملNumerical Simulation and Estimation of the Transvers Macrodispersivity Coefficient of Aqueous Phase (Miscible) Contaminants of Salt Water in a Heterogeneous and Homogeneous Porous Media
Deterioration of groundwater resources in coastal regions due to the progression of saline water in aquifers in these regions is currently one of the important issues in providing water needs in these areas. In coastal regions, saline water enters the aquifer from below in shape of wedge. Due to the difference in the density between fresh and salty water, an interface zone forms between two flu...
متن کاملThe electrical transport properties in ZnO bulk, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO heterostructures
p { margin-bottom: 0.1in; direction: rtl; line-height: 120%; text-align: right; }a:link { color: rgb(0, 0, 255); } In this paper, the reported experimental data related to electrical transport properties in bulk ZnO, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO single and double heterostructures were analyzed quantitavely and the most important scattering parameters on controlling electron concentratio...
متن کاملInvestigation of the Improvement of Energy Generation by Pressure Retarded Osmosis
Knowing the overall solute flux and the partial fluxes expressed by every single transport layer, the membrane internal interface concentrations can separately be expressed. Both the overall transport coefcient and the driving force strongly depend, among others, on the value of the structural parameter and the water permeability. Study of the interface concentrations as ...
متن کاملSimulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation
In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...
متن کامل